作为概念演示,冯济与合作者针对单层二硫化钼开展数值模拟。单层二硫化钼是目前备受关注的量子材料。冯济和王恩哥在之前的合作中,演示了单层二硫化钼具有被称为“谷”的量子自由度,体现出“谷”圆二色光选择性及量子输运特性[Ting Cao et al. Nature Communications 3, 887 (2012)]。除了特异的光学性能,二硫化钼还是一个只有0.6纳米厚的超强度弹性晶体薄膜,可以承载11%的弹性应变。冯济与合作者通过基于密度泛函之GW近似,求解Bethe-Salpeter方程,得出二硫化钼中的准粒子能量(电子、空穴和激子)。计算显示,二硫化钼中的准粒子能量对应变非常敏感,其激子能量在材料的强度范围之内可以改变0.7 eV之多。结合经典分子动力学计算出顶压下的单层二硫化钼的应变分布,冯济及其合作者演示了这一设计的可行性。
应变和应变场对材料的许多性能在量子层面具有深刻影响。冯济的工作展示了非均匀应变场在调控载流子方面的独特能力。弹性应变具有d(d+1)/2个维度(d是材料的维度),相应的应变场则是一个d(d+3)/2维的连续变量,对材料性能具有丰富多变的调控能力。在超强度材料崭露头角的今天,不难预见弹性应变工程将是一个具有理论和技术价值的科研方向。哥伦比亚大学的James Hone教授在《自然-光学》同期的News and Views上对冯济的工作发表评述[Nature Photonics 6, 804-806 (2012)],也对弹性应变工程的潜力给予高度评价。